吴恒安,中国科学技术大学工程科学学院近代力学系,教授,博士生导师,工程科学学院执行院长。19757月出生于湖北省黄冈市红安县,19977月获得中国科学技术大学理论与应用力学学士学位,19987月获得中国科学技术大学计算机软件学士学位(双),20026月获得中国科学技术大学固体力学博士学位,同年获中国科学院院长奖。20028-20042月在新加坡国立大学机械工程系任博士后研究员,20042月任中国科学技术大学工程科学学院近代力学系副教授,20106月晋升教授。20106-20115月在英国曼彻斯特大学做访问学者。20157-20206月任中国科学院材料力学行为和设计重点实验室主任。曾获得2014年度中国科学技术大学杰出研究校长奖、2015年度国家杰出青年科学基金、2017年度中国科学院朱李月华优秀教师奖、2017年度安徽省教学成果特等奖、2017年度和2018年度中国科学院优秀导师奖、2018年度高等教育国家级教学成果二等奖、2020年度宝钢优秀教师特等奖、2020年度中国科学院青年科学家国际合作伙伴奖、2021年度全国徐芝纶力学优秀教师奖、2022年度霍英东教育基金会高等院校教育教学奖,入选2015年度科技部创新人才推进计划中青年科技创新领军人才、2017年度第三批国家高层次人才特殊支持计划领军人才、2018年度安徽省教学名师。主讲本科生<<材料力学>><<计算力学基础>>(首批国家级一流本科课程),主持教育部首批新工科研究与实践项目。研究领域为:[1]“微纳结构材料力学行为和设计”[2]“固液界面微尺度力学与限域传质”[3]“计算力学数值方法及其工程应用”。已在ScienceNature等学术期刊发表被SCI收录论文200余篇,被SCI他引10000余次。

欢迎关注我们课题组微信公众号,搜索公众号“计算力学实验室”。硕士推免生可提前联系,要求大学期间有科研或者学科竞赛经历,请拟申请同学在每年3-5月联系,招满即止。关于博士生招生,本课题组主要是硕转博方式,一般没有名额接受申请考核制博士生。wuha@ustc.edu.cn,0551-63601245

更多研究团队、研究方向和研究成果信息,可查看实验室橱窗展板。1809-1,1611-2,1611-3,1611-4,1611-5,1611-6,1611-7,1611-8,1611-9

详细研究方向介绍可参考 中国科大研究生招生公众号导师推介

Contact Hengan Wuwuha#ustc.edu.cn 0551-6360-1245 (CV in English (pdf), photo of WuHA, photo of CMe-1806, photo of CMe-1611, photo of CMe-1508, photo of CMe-1308, photo of CMe-1210, photo of CMe-HPC )

Publication List ( ResearcherID: http://www.researcherid.com/rid/A-3646-2009 ):

257. He, Q.S., Z.X. Wang, C. Liu*, and H.A. Wu, Identifying nonuniform distributions of rock properties and hydraulic fracture trajectories through deep learning in unconventional reservoirs. Energy, 2024. 291: p. 130329. (https://doi.org/10.1016/j.energy.2024.130329)

256. Fan, J.N. J.C. Fan, X.Y. Hong, H.Y. Xu, H.A. Wu*, and F.C. Wang*, Exploring wettability variations on minerals surfaces: Insights from spreading coefficient and interaction energy analysis. Geoenergy Science and Engineering, 2024. 234: p. 212672. (https://doi.org/10.1016/j.geoen.2024.212672)

255. Xiao, J. H., Z.B. Zhang, J.H. Li, S.M. Chen*, H.L. Gao, Y.X. Liao, L. Chen, Z.S. Wang, Y.F. Lu, Y.Z. Hou, H.A. Wu, D.H. Zou*, and S.H. Yu*, Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. National Science Review, 2024. 11(13): p. nwad333. (https://doi.org/10.1093/nsr/nwad333)

254. Zhu,Y.B.#, Z.Y. Fang#, Z.T. Zhang, and H.A. Wu*, Discontinuous phase diagram of amorphous carbons. National Science Review, 2024. 12: p. nwae051. (https://doi.org/10.1093/nsr/nwae051)

253. Zhou, N.,Y.b. Zhu*, and H.A. Wu*, Effect of the sonic shock wave on void evolution in materials under irradiation. Mechanics of Materials, 2024. 189: p. 104907. (https://doi.org/10.1016/j.mechmat.2023.104907)

252. Wang, Q., H. Yu*, W.L. Xu, H.W. Huang, F.D. Li, and H.A. Wu, How does the heterogeneous interface influence hydraulic fracturing? International Journal of Engineering Science, 2024. 195: p. 104000. (https://doi.org/10.1016/j.ijengsci.2023.104000)

251. Li,B., H. Yu*, D.Q. Ji, F.C. Wang, Z.D. Lei*, and H.A. Wu, Pore-scale imbibition patterns in layered porous media with fractures. Physics of Fluids, 2024. 36(1): p. 012120. (https://doi.org/10.1063/5.0182210)

250. Zhang, Z.T.#, Z.Y. Fang#, H.A. Wu, and Y.B. Zhu*, Temperature-dependent paracrystalline nucleation in atomically disordered diamonds. Nano Letters, 2023. 24(1): p. 312-318. (https://doi.org/10.1021/acs.nanolett.3c04037)

249. Zhang, H.L., H. Yu*, Q. Wang, W.L. Xu, M.C. Huang, F.D. Li, and H.A. Wu*, How to achieve the fast computation for voxel-based irregular structures by few finite elements? Extreme Mechanics Letters, 2023. 65: p. 102103. (https://doi.org/10.1016/j.eml.2023.102103)

248. Li, J.C., K.L. Zhang, J.C. Fan, H.A. Wu*, and F.C. Wang*, Boundary slip moderated by interfacial hydrogen bond dynamics. Microfluidics and Nanofluidics, 2023. 27(12): p. 86. (https://doi.org/10.1007/s10404-023-02695-8)

247. Li, B., H. Yu*, W.l. Xu, H.W. Huang, M.C. Huang, S.W. Meng*, H. Liu, and H.A. Wu, A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks. Energy, 2023. 284: p. 129285. (https://doi.org/10.1016/j.energy.2023.129285)

246. Liu, X.Y., Y.F. Xu, J.C. Shi, Y.B. Zhu, S. Zhang* and H.A. Wu*, Anti-fatigue nanomechanics in the pre-cracked graphene-copper artificial nacre under cyclic tension. Carbon, 2023. 215: p. 118505. (https://doi.org/10.1016/j.carbon.2023.118505)

245. Huang, M.C., H. Yu*, H.Y. Xu, H.L. Zhang, X.Y. Hong and H.A. Wu, Fast and accurate calculation on CO2/CH4 competitive adsorption in shale nanopores: From molecular kinetic theory to machine learning model. Chemical Engineering Journal, 2023. 474(15): p. 145562. (https://doi.org/10.1016/j.cej.2023.145562)

244. Huang, X., J.C. Fan, H.A. Wu* and F.C. Wang*, Local molecular asymmetry mediated self-adaptive pinning force on the contact line. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. 674(5): p. 131987. (https://doi.org/10.1016/j.colsurfa.2023.131987)

243. Liu, C.* and H.A. Wu, A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identification. International Journal of Applied Mechanics, 2023. 15(8): p. 2350065. (https://dx.doi.org/10.1142/S1758825123500655)

242. Cui, F.L., J. Xu*, J. Xia, H. Liu, H.A. Wu and F.C. Wang*, Micromechanical mechanism of oil/brine/rock interfacial interactions based on first-principles calculations. Journal of Molecular Liquids, 2023. 386(15): p. 122502. (https://doi.org/10.1016/j.molliq.2023.122502)

241. Liu, C.* and H.A. Wu, cv-PINN: Efficient learning of variational physics-informed neural network with domain decomposition. Extreme Mechanics Letters, 2023. 63: p. 102051. (https://doi.org/10.1016/j.eml.2023.102051)

240. Wu, B., X.X. Wang, Y.B. Zhu, H.W. Wu, A.M. He, H.A. Wu* and P. Wang*, Atomic insight into the oxidation mechanism of a core-shell aluminum nanoparticle: Atomic diffusion or micro-explosion? Journal of Physical Chemistry C, 2023. 127(34): p. 16781-16791. (https://doi.org/10.1021/acs.jpcc.3c02577)

239. Yu, H.*, W.L. Xu, B. Li, H.W. Huang, M. Micheal, Q. Wang, M.C. Huang, S.W. Meng*, H. Liu and H.A. Wu, Hydraulic fracturing and enhanced recovery in shale reservoirs: Theoretical analysis to engineering applications. Energy Fuels, 2023. 37(14): p. 9956-9997. (https://doi.org/10.1021/acs.energyfuels.3c01029)

238. Meng, X.S.#, L.C. Zhou#, L. Liu#, Y.B. Zhu, Y.F. Meng, D.C. Zheng, B. Yang, Q.Z. Rao, L.B. Mao*, H.A. Wu* and S.H. Yu*, Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicat. Science, 2023. 380(6651): p. 1252-1257. (https://doi.org/10.1126/science.ade2038)

237. Kong, Z.#, Y.Z. Hou#, J.F. Gu, F.C. Li, Y.B. Zhu, X.Y. Ji, H.A. Wu and J.J. Liang*, Biomimetic ultratough, strong, and ductile artificial polymer fiber based on immovable and slidable cross-links. Nano Letters, 2023. 23(13): p. 6216-6225. (https://doi.org/10.1021/acs.nanolett.3c01786)

236. Li, F.D, X.D. Chen, P. Xu, Z.C. Fan, Q. Wang, C.S. Lyu, Q. Zhang, H. Yu* and H.A. Wu, Optimal design of thin-layered composites for type IV vessels: Finite element analysis enhanced by ANN. Thin-Walled Structures, 2023. 187: p. 110752. (https://doi.org/10.1016/j.tws.2023.110752)

235. Gu, J.F.#, F.C. Li#, Y.B. Zhu#, D.H. Li, X. Liu, B. Wu, H.A. Wu*, X.Q. Fan, X.Y. Ji, Y.S. Chen and J.J. Liang*, Extremely robust and multifunctional nanocomposite fibers for strain-unperturbed textile electronics. Advanced Materials, 2023. 35(15): p. 2209527. (https://doi.org/10.1002/adma.202209527)

234. Marembo M, H. Yu*, S.W. Meng, W.L. Xu, H.W. Huang, M.C. Huang, H.L. Zhang, H. Liu, H.A. Wu, Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events. Energy, 2023. 278: p. 127780. (https://doi.org/10.1016/j.energy.2023.127780)

233. Wang, R.X.#, J.H. Qian#, X.F. Chen, Z.X. Low*, Y. Chen, H.Y. Ma, H.A. Wu, C.M. Doherty, D. Acharya, Z.L. Xie, M.R. Hill, W. Shen, F.C. Wang* and H.T. Wang*, Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nature Communications, 2023. 14(1): p. 2161. (https://doi.org/10.1038/s41467-023-37932-9)

232. Hu, Z.N.#, F.F. Li#, H.T. Wu#, J.H. Liao#, Wang, G. Chen, Z.F, Shi, Y.Q. Zhu, S.Y. Bu, Y.X. Zhao, M.P. Shang, Q. Lu, K.C. Jia, Q. Xie, G.R. Wang, X.D. Zhang, Y.B. Zhu, H.A. Wu*, H.L. Peng*, L. Lin*, Z.F. Liu*, Rapid and scalable transfer of large-area graphene wafers. Advanced Materials, 2023. p. 2300621. (https://doi.org/:10.1002/adma.2023)

231. Huang, H.W., H. Yu*, W.L. Xu, C.S. Lyu, M. Micheal, H.Y. Xu, H. Liu, H.A. Wu*, A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process. Energy, 2023. 268: p. 126700. (https://doi.org/10.1016/j.energy.2023.126700)

230. Zhou, L.C., Z.Z. He, Z.T. Zhang, Y.B. Zhu*, H.A. Wu*, Maximum utilization of nacre-mimetic composites by architecture manipulation and interface modification towards critical damage state. Composites Science and Technology, 2023. 233: p. 109893. (https://doi.org/10.1016/j.compscitech.2022.109893)

229. Wang, Q., H. Yu*, W.L. Xu, C.S. Lyu, J.N. Zhang, M. Micheal, H.A. Wu*, Spatial and temporal constraints of the cohesive modeling: A unified criterion for fluid‐driven fracture. International Journal for Numerical Methods in Engineering, 2023. 124: p. 2756-2782. (https://doi.org/10.1002/nme.7227)

228. Qian, J.H., H.A. Wu*, F.C. Wang*, Molecular geometry effect on gas transport through nanochannels: Beyond Knudsen theory. Applied Surface Science, 2023. 611: p. 155613. (https://doi.org/10.1016/j.apsusc.2022.155613)

227. Yuan, G.Q.#, Y.Y. Liu#, J. Xia#, Y.C. Su, W.X. Wei, Y.B. Zhu, Y. An, H.A. Wu, Q. Xu and H. Pang*, Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023. 16(5): p. 6881-6889. (https://doi.org/10.1007/s12274-023-5424-x)

226. Chen, S.M.#, S.C. Zhang#, H.L. Gao*, Q. Wang, L.C. Zhou, H.Y. Zhao, X.Y. Li, M. Gong, X.F. Pan, C. Cui, Z.Y. Wang, Y.L. Zhang, H.A. Wu, S.H. Yu*, Mechanically robust bamboo node and its hierarchically fibrous structural design. National Science Review, 2023. 10(2): p. nwac195. (https://doi.org/10.1093/nsr/nwac195)

225. Pan, X.F.#, Z. Bao#, W.L. Xu#, H.L. Gao*, B.Wu, Y.B. Zhu, G.H. Yu, J. Chen, S.C. Zhang, L. Li, H.A. Wu, X. Li*, S.H. Yu*, Recyclable Nacre-Like Aramid-Mica Nanopapers with Enhanced Mechanical and Electrical Insulating Properties. Advanced Functional Materials, 2023. 33(9): p. 2210901. (https://doi.org/10.1002/adfm.202210901)

224. Huang, Z.C.#, Z.Z. He#, Y.B. Zhu*, H.A. Wu*, A general theory for the bending of multilayer van der Waals materials. Journal of the Mechanics and Physics of Solids, 2023. 171: p. 105144. (https://doi.org/10.1016/j.jmps.2022.105144)

223. Xu, W.L., H. Yu*, M. Micheal, H.W. Huang, H. Liu, H.A. Wu*. An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery. Energy, 2023. 263: p. 125682. (https://doi.org/10.1016/j.energy.2022.125682).

222. Sia, G.D.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M. Hung*, Preservable superhydrophilicity of thermally cured graphene-nanoplatelets/epoxy nanocomposite coatings. Composites Part B: Engineering, 2023. 252: p. 110500. (https://doi.org/10.1016/j.compositesb.2023.110500)

221. Liu, C.*, A.G. Zhao, H.A. Wu, Competition growth of biwing hydraulic fractures in naturally fractured reservoirs. Gas Science and Engineering, 2023. 109: p. 204873. (https://doi.org/10.1016/j.jgsce.2023.204873)

220. He, Z.Z.*, H.A. Wu, J. Xia, Y.Z. Hou, Y.B. Zhu*, How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. Extreme Mechanics Letters, 2023. 58: p. 101947. (https://doi.org/10.1016/j.eml.2022.101947)

219. Zhang, Z.B.#, Z.Z. He#, X.F. Pan#, H.L. Gao*, S.M. Chen, Y.B. Zhu, S. Cao, C. Zhao, S. Wu, X. Gong, H.A. Wu*, S.H. Yu*. Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous Composites. Small, 2023. 19(2): p. 2205219. (https://doi.org/10.1002/smll.202205219)

218. Hou, Y.Z., J. Xia*, Z.Z. He, Y.B. Zhu, H.A. Wu*, Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023. 16: p. 8036–8041. (https://doi.org/10.1007/s12274-022-5293-3)

217. Hong, X.Y., H.Y. Xu, H. Yu, J. Xu*, H. Liu, F.C. Wang, H.A. Wu*, Molecular Understanding on Migration and Recovery of Shale Gas/Oil Mixture through a Pore Throat. Energy & Fuels, 2023. 37 (1): p. 310-318. (http://doi.org/10.1021/acs.energyfuels.2c03315)

216. Cheng, H., J. Xia, M. Wang, C. Wang, R.J. Gui, X.M. Cao, T.P. Zhou, X.S. Zheng, W.S. Chu, H.A. Wu, Y. Xie, and C.Z. Wu*. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. Journal of the American Chemical Society, 2022. 144(48): p.22018-22025. (http://doi.org/10.1021/jacs.2c09147)

215. Ng, V. O.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M. Hung*. Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures. Applied Energy, 2022. 326: p.119994. (https://doi.org/10.1016/j.apenergy.2022.119994)

214. Huang, M.C.#, H.Y. Xu#, H. Yu*, H.L. Zhang, M. Micheal, X.H. Yuan, H.A. Wu*. Fast prediction of methane adsorption in shale nanopores using kinetic theory and machine learning algorithm. Chemical Engineering Journal, 2022. 446: p.137221. (https://doi.org/10.1016/j.cej.2022.137221)

213. Zhang, H.L., H. Yu*, S.W. Meng, M.C. Huang, M. Micheal, J. Su, H. Liu, H.A. Wu*, Fast and accurate reconstruction of large-scale 3D porous media using deep learning. Journal of Petroleum Science and Engineering, 2022, 217: p.110937. (https://doi.org/10.1016/j.petrol.2022.110937)

212. Xu, W.L., H. Yu*, J. N. Zhang, C.S. Lyu, Q.Wang, M. Micheal, H.A. Wu*, Phase-field method of crack branching during SC-CO2 fracturing: A new energy release rate criterion coupling pore pressure gradient. Computer Methods in Applied Mechanics and Engineering, 2022, 399: p.115366. (https://doi.org/10.1016/j.cma.2022.115366)

211. Cui, F.L., X. Jin*, H. Liu, H.A. Wu*. F.C. Wang, Molecular modeling on Gulong shale oil and wettability of reservoir matrix. Capillarity, 2022, 5(4): p.65-74. (https://doi.org/10.46690/capi.2022.04.01)

210. Zhang, J.N., H. Yu*, W.L. Xu, C.S. Lv, M. Micheal, F. Shi, H.A. Wu*, A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model. Engineering Fracture Mechanics, 2022. 271: p. 108621. (https://doi.org/10.1016/j.engfracmech.2022.108621)

209. Hong, X.Y., H. Yu, H.Y. Xu, X.Q. Wang, X. J, H.A. Wu*, F.C. Wang*, Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. Journal of Molecular Liquids, 2022. 359: p. 119312. (https://doi.org/10.1016/j.molliq.2022.119312)

208. Wang, F.C., J.H. Qian, J.C. Fan, J.C. LiH.Y. Xu, H.A. Wu*, Molecular transport under extreme confinement. Science China Physics, Mechanics & Astronomy, 2022. 65: p. 264601. (https://doi.org/10.1007/s11433-021-1853-3)

207. Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo, H.F. Song, F.C. Wu, H.A. Wu, F.L. Tan, J.H. Zhao, C.L. Liu*, C.W. Sun. New explanation for the existence of B19′ phase in NiTi alloy from the perspective of twinning martensite. Scripta Materialia, 2022. 214: p. 114644. (https://doi.org/10.1016/j.scriptamat.2022.114644)

206. Cao, G., J.N. Zhang, Y.B. Guo, C. Liu, M. Micheal, C.S. Lv, H. Yu*, H.A. Wu. Numerical modeling on friction and wear behaviors of all-metal progressive cavity pump. Journal of Petroleum Science and Engineering, 2022. 213: p. 110443. (https://doi.org/10.1016/j.petrol.2022.110443)

205. Micheal, M., W.L. Xu, J. J, H. Yu*, J.D. Liu, W.D. Jiang*, H. Liu, H.A. Wu. A multi-scale quadruple-continuum model for production evaluation of shale gas reservoirs considering complex gas transfer mechanisms and geomechanics. Journal of Petroleum Science and Engineering, 2022. 213: p. 110419. (https://doi.org/10.1016/j.petrol.2022.110419)

204. Chen, S.M, K.J. Wu, H.L. Gao*, X.H. Sun, S.C. Zhang, X.Y. Li, Z.B. Zhang, S.M. Wen, Y.B. Zhu, H.A. Wu, Y. Ni, S.H. Yu*. Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites. Matter, 2022. 5(5): p. 1563-1577. (https://doi.org/10.1016/j.matt.2022.02.023)

203. Shi, L.X#, Y.B. Zhu#, X.Q. Fan#, H.A. Wu*, P.Q. Wu, X.Y. Ji, Y.S. Chen, J.J. Liang*. An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter, 2022. 5(5): p. 1547-1562. (https://doi.org/10.1016/j.matt.2022.02.022)

202. Wang, C.#, H.Y. Xu#, H. Cheng, H. Yu, S. Liu, W. J. Wang, R.L. Yuan, H.F. Liu, T.P. Zhou, W.S. Chu, H.A. Wu, Y. Xie, C.Z. Wu, Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Science China Chemistry, 2022. 65: p.898–904. (https://doi.org/10.1007/s11426-021-1201-0).

201. Zhang, J.N., H. Yu, Q. Wang, C.S. Lv, C. Liu, F. Shi, H.A. Wu*, Hydraulic fracture propagation at weak interfaces between contrasting layers in shale using XFEM with energy-based criterion. Journal of Natural Gas Science and Engineering, 2022. 101: p.104502. (https://doi.org/10.1016/j.jngse.2022.104502)

200. Lu, J.#, H.Y. Xu#, H. Yu#, X.Y. Hu#, J. Xia, Y.L. Zhu, F.C. Wang, H.A. Wu*, L. Jiang, H.T. Wang*, Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework–based nanochannels. Science Advances, 2022. 8: p.eabl5070. (https://doi.org/10.1126/sciadv.abl5070)

199. Shi, X.L., X.Q. Fan, Y.B. Zhu, Y. Liu, P.Q. Wu, R.H. Jiang, B. Wu, H.A. Wu, H. Zheng, J.B. Wang, X.Y. Ji, Y.S. Chen*, J.J. Liang*, Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nature Communications, 2022. 13: p.1119. (https://doi.org/10.1038/s41467-022-28760-4)

198. Meng, Y.F.#, Y.B. Zhu#, L.C. Zhou, X.S. Meng, Y.L. Yang, R. Zhao, J. Xia, B. Yang, Y.J. Lu, H.A. Wu, L.B. Mao*, S.H. Yu*, Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. Advanced Materials, 2022. 34: p.2108267. (https://doi.org/10.1002/adma.202108267)

197. Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, H. Liu, H.A. Wu*, Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process. Energy, 2022. 242: p.122992. (https://doi.org/10.1016/j.energy.2021.122992)

196. Zhang, R.G., Y. Wang, Y.B. Zhu, J.D. Jin, H.A. Wu, P. Gu*, Y. Zhao*, Stress analysis of double-walled pipes undergone mechanical drawing process. The International Journal of Advanced Manufacturing Technology, 2022. 119: p.2525–2535. (https://doi.org/10.1007/s00170-021-08283-w)

195. Wang, J.N., B. Wu, F.C. Wu, P. Wang, A.M. He*, H.A. Wu*, Spall and recompression processes with double shock loading of polycrystalline copper. Mechanics of Materials, 2022. 165: p.104194. (https://doi.org/10.1016/j.mechmat.2021.104194)

194. Lim, E.#, X.Y. Hong#, M.K. Tan, H. Yu*, H.A. Wu*, Y. M. Hung*, Distinctive evaporation characteristics of water and ethanol on graphene nanostructured surfaces. International Journal of Heat and Mass Transfer, 2022, 183: p. 122174. (https://doi.org/10.1016/j.ijheatmasstransfer.2021.122174)

193. Liu, S.#, H. Cheng#, J. Xia#, C. Wang, R.J. Gui, T.P. Zhou, H.F. Liu, J. Peng, N. Zhang, W.J. Wang, W.S. Chu, H.A. Wu*, Y.Xie*, Surface microenvironment optimization- induced robust oxygen reduction for neutral zinc-air batteries. Natural Sciences, 2021, 1(2): p. e20210005. (https://doi.org/10.1002/ntls.20210005)

192. Yuan, X.H., H. Yu, H.L. Zhang, L. Zheng, E.B. Dong*, H.A. Wu*, A Multi-Scale Grasp Detector Based on Fully Matching Model. Computer Modeling in Engineering & Sciences, 2022, 133(2): p. 281-301. (https://dio.org/10.32604/cmes.2022.021383)

191. He, Z.Z., Y.B. Zhu, H.A. Wu*, Multiscale mechanics of noncovalent interface in graphene oxide layered nanocomposites. Theoretical and Applied Mechanics Letters, 2022, 12(1): p. 100304. (https://doi.org/10.1016/j.taml.2021.100304)

190. Zhang, H.L., H. Yu*, X.H. Yuan, H.Y. Xu, M. Micheal, J.N. Zhang, H.L. Shu, G.C. Wang, H.A. Wu*, Permeability prediction of low-resolution porous media images using autoencoder-based convolutional neural network. Journal of Petroleum Science and Engineering, 2022, 208: p. 109589. (https://doi.org/10.1016/j.petrol.2021.109589)

189. He, Z.Z., Y.B. Zhu* and H.A. Wu*, A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022. 158: p. 104560. (https://doi.org/10.1016/j.jmps.2021.104560)

188. Pan, X.F.#, B. Wu#, H.L. Gao*, S.M. Chen, Y.B. Zhu, L.C. Zhou, H.A. Wu and S.H. Yu*, Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Advanced Materials, 2022. 34: p. 2105299. (https://doi.org/10.1002/adma.202105299)

187. Cheng, Z.#, L.F. Bu#, Y. Zhang#, H.A. Wu, T. Zhu*, H.J. Gao* and L. Lu*, Unraveling the origin of extra strengthening in gradient nanotwinned metals. Proceedings of the National Academy of Sciences, 2022. 119(3): p. e2116808119. (https://doi.org/10.1073/pnas.2116808119)

186. Cheng, H.#, R.J. Gui#, H. Yu#, C. Wang, S. Liu, H.F. Liu, T.P. Zhou, N. Zhang, X.S. Zheng, W.S. Chu, Y. Lin, H.A. Wu, C.Z. Wu* and Y. Xie, Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proceedings of the National Academy of Sciences, 2021. 118(35): p. e2104026118. (https://doi.org/10.1073/pnas.2104026118)

185. Zhao, S.#, C.H. Jiang#, J.C. Fan#, S.S. Hong, P. Mei, R.X. Yao, Y.L. Liu, S.L. Zhang, H. Li, H.Q. Zhang, C. Sun, Z.B. Guo, P.P. Shao, Y.H Zhu, J.W. Zhang, L.S. Guo, Y.H. Ma, J.Q. Zhang, X. Feng*, F.C. Wang*, H.A. Wu and B. Wang*, Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021. 20: p. 1551-1558. (https://doi.org/10.1038/s41563-021-01052-w)

184. Zhu, Y.B., Y.C. Wang, B. Wu, Z.Z. He, J. Xia and H.A. Wu*, Micromechanical Landscape of Three-Dimensional Disordered Graphene Networks. Nano Letters, 2021. 21(19): p. 8401-8408. (https://doi.org/10.1021/acs.nanolett.1c02985)

183. Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo, F.C. Wu, H.A. Wu, F.L. Tan, J.H. Zhao, C.L. Liu* and C.W. Sun, Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures. Mechanics of Materials, 2021. 161: p. 104004. (https://doi.org/10.1016/j.mechmat.2021.104004)

182. Hou, Y.Z., Z.Z. He, Y.B. Zhu* and H.A. Wu, Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021. 273: p. 118578. (https://doi.org/10.1016/j.carbpol.2021.118578)

181. Gao, H.L.#, Z.Y. Wang#, C. Cui#, J.Z. Bao, Y.B. Zhu, J. Xia, S.M. Wen, H.A. Wu and S.H. Yu*, A highly compressible and stretchable carbon spring  for smart vibration and magnetism sensors. Advanced Materials, 2021. 33: p. 2102724. (https://doi.org/10.1002/adma.202102724)

180. Wang, Q., W.J. Yin, H. Yu, Y.B. Zhu* and H.A. Wu*, Hyperbolic-like structure with negative Poisson’s ratio:deformation mechanism and structural design. Physica Status Solidi B, 2021. 258(10): p. 2100011. (https://doi.org/10.1002/pssb.202100011)

179. Micheal, M.#, W.L. Xu#, H.Y. Xu, J.N. Zhang, H.J. Jin, H. Yu* and H.A. Wu*, Multi-scale modelling of gas transport and production evaluation in shale reservoir considering crisscrossing fractures. Journal of Natural Gas Science and Engineering, 2021. 95: p. 104156. (https://doi.org/10.1016/j.jngse.2021.104156)

178. Deng, Y., Z.J. Chen, Y.B. Zhu, H.A. Wu and P. Gu*, The device using a polydimethylsiloxane membrane and the phase transition of water. Coatings, 2021. 11: p. 1102. (https://doi.org/10.3390/coatings11091102)

177. Ng, V.O.#, H. Yu#, H.A. Wu and Y.M. Hung*, Thermal performance enhancement and optimization of two-phase closed thermosyphon with graphene-nanoplatelets coatings. Energy Conversion and Management, 2021. 236: p. 114039. (https://doi.org/10.1016/j.enconman.2021.114039)

C.11 宋戎妆,侯远震,何泽洲,夏骏,朱银波*,吴恒安. 纳米纤维素序构材料界面力学行为和设计的研究进展[J].中国科学技术大学学报,2021,51(10):766-786. pdf

176. Li, J.C., Y.B. Zhu, J. Xia, J.C. Fan, H.A. Wu* and F.C. Wang*, Anomalously low friction of confined monolayer water with a quadrilateral structure. Journal of Chemical Physics, 2021. 154(22): p. 224508. (https://doi.org/10.1063/5.0053361)

175. Li, Y.H.#, Y.Z. Yu#, J.H. Qian, H.A Wu* and F.C. Wang*, Anomalous ion transport through angstrom-scale pores: Effect of hydration shell exchange on ion mobility. Applied Surface Science, 2021. 560: p. 150022. (https://doi.org/10.1016/j.apsusc.2021.150022)

174. Qian, J.H., Y.H. Li, H.A. Wu* and F.C. Wang*, Surface morphological effects on gas transport through nanochannels with atomically smooth walls. Carbon, 2021. 180: p. 85-91. (https://doi.org/10.1016/j.carbon.2021.04.087)

173. Zhang, S., Y.B. Zhu, F.C. Wang, X.Y. Liu*, H.A. Wu and S.N. Luo, Theoretical analysis of high strength and anti-buckling of three-dimensional carbon honeycombs under shear loading. Composites Part B: Engineering, 2021. 219: p. 108967. (https://doi.org/10.1016/j.compositesb.2021.108967)

172. Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A Wu*, Ignition and Combustion of Hydrocarbon Fuels Enhanced by Aluminum Nanoparticle Additives: Insights from Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 2021. 125(21): p. 11359–11368. (https://doi.org/10.1021/acs.jpcc.1c01435)

171. Zhu, Y.D., Z.J. Zheng*, Y.L. Zhang, H.A. Wu and J.L. Yu, Adhesion of elastic wavy surfaces: Interface strengthening/weakening and mode transition mechanisms. Journal of the Mechanics and Physics of Solids, 2021. 151: p. 104402. (https://doi.org/10.1016/j.jmps.2021.104402)

170. Wang, Y.C., Y.B. Zhu* and H.A. Wu, Formation and topological structure of three-dimensional disordered graphene networks. Physical Chemistry Chemical Physics, 2021. 23(17): p. 10290-10302.  (https://doi.org/10.1039/D1CP00617G)

169. Liu, H.F.#, J. Xia#, N. Zhang, H. Cheng, W.T. Bi, X.L. Zu, W.S. Chu, H.A. Wu, C.Z. Wu* and Y. Xie, Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nature Catalysis, 2021. 4: p. 202–211. (https://doi.org/10.1038/s41929-021-00576-3)

168. Zhou, L.C., Y.B. Zhu, Z.Z. He, X. Jin* and H.A. Wu*, Multi-parameter structural optimization to reconcile mechanical conflicts in nacre-like composites. Composite Structures, 2021. 259: p. 113225. (https://doi.org/10.1016/j.compstruct.2020.113225)

C.10 洪祥宇,徐亨宇,崔风路,余昊,吴一宁,吴恒安,王奉超*. 分子模拟在非常规油气开发中的应用[J].计算力学学报,2021,38(03):313-320. pdf

167. Chen, Z.J., G. Cheng, Y.B. Zhu, H.A. Wu, E.B. Dong, P. Gu* and Y. Zhao*, Biomimetic polydimethylsiloxane (PDMS)/carbon fiber lamellar adhesive composite in thermal vacuum environment. International Journal of Adhesion and Adhesives, 2021. 105: p. 102778. (https://doi.org/10.1016/j.ijadhadh.2020.102778)

166. Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems. Journal of Colloid and Interface Science, 2021. 585: p. 320-327. (https://doi.org/10.1016/j.jcis.2020.11.100)

165. Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, F.C. Wang and H.A. Wu, Enhanced gas recovery in kerogen pyrolytic pore network: Molecular simulations and theoretical analysis. Energy & Fuels, 2021. 35(3): p. 2253-2267. (https://doi.org/10.1021/acs.energyfuels.0c04137)

164. Wang, Y.C., Y.B. Zhu* and H.A. Wu, Porous Characteristics of Three-Dimensional Disordered Graphene Networks. Crystals, 2021. 11(2): p. 127. (https://doi.org/10.3390/cryst11020127)

163. Guan, Q.F.#, Z.M. Han#, Y.B. Zhu#, W.L. Xu, H.B. Yang, Z.C. Ling, B.B. Yan, K.P. Yang, C.H. Yin, H.A. Wu and S.H. Yu*, Bio-Inspired Lotus-Fiber-Like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Letters, 2021. 21(2): p. 952-958. (https://dx.doi.org/10.1021/acs.nanolett.0c03707)

C.09 吕超,张旭平,王桂吉*,罗斌强,罗宁,吴恒安,谭福利,赵剑衡,刘仓理,孙承纬. 冲击载荷下Ni52Ti48合金的微观响应特性[J].高压物理学报,2021,35(04):128-141. pdf

C.08 王嘉楠,伍鲍,何安民,吴凤超,王裴,吴恒安*.强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展[J].高压物理学报,2021,35(04):4-17. pdf

162. Hou, Y.Z.#, Q.F. Guan#, J. Xia#, Z.C. Ling, Z.Z. He, Z.M. Han, H.B. Yang, P. Gu, Y.B. Zhu*, S.H. Yu* and H.A. Wu*, Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. ACS Nano, 2021. 15(1): p. 1310-1320. (https://dx.doi.org/10.1021/acsnano.0c08574)

161. Yu, H.#, H.Y. Xu#, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy & Fuels, 2021. 35(2): p. 911-943. (Cover paper) (https://dx.doi.org/10.1021/acs.energyfuels.0c03276)

160. Ullah, A.*, H.A. Wu, A. Rehman, Y.B. Zhu, T.T Liu and K. Zhang, Influence of laser parameters and Ti content on the surface morphology of L-PBF fabricated Titania. Rapid Prototyping Journal, 2021. 27(1): p. 71-80. (https://doi.org/10.1108/RPJ-03-2020-0050)

159. Chen, X.F., Y.B. Zhu, H. Yu, J.Z. Liu, C.D. Easton, Z.Y. Wang, Y.X. Hu, Z.L. Xie, H.A. Wu, X.W. Zhang, D. Li and H.T. Wang*, Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021. 621: p. 118934. (https://doi.org/10.1016/j.memsci.2020.118934)

158. Zhou, T.P.#, H. Shan#, H. Yu#, C.A. Zhong#, J. K. Ge, N. Zhang, W.S. Chu, W.S. Yan, Q. Xu, H.A. Wu, C.Z. Wu* and Y. Xie, Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density Zinc–air fuel cell with robust stability. Advanced Materials, 2020. 32: p. 2003251. (https://doi.org/10.1002/adma.202003251)

157. He, Z.Z., Y.B. Zhu and H.A. Wu*, Edge effect on interlayer shear in multilayer two-dimensional material assemblies. International Journal of Solids and Structures, 2020. 204-205: p. 128-137. (https://doi.org/10.1016/j.ijsolstr.2020.08.021)

156. Wang, Y.C., Y.B. Zhu*, Z.Z. He and H.A. Wu, Multiscale investigations into the fracture toughness of SiC/graphene composites: Atomistic simulations and crack-bridging model. Ceramics International, 2020. 46(18): p. 29101-29110. (https://doi.org/10.1016/j.ceramint.2020.08.082)

155. Xia, J., Y.B. Zhu, X. Jin and H.A. Wu*, Unravelling the Interactions Between Organic Molecules and Reduced Graphene Oxide in an Aqueous Environment. Carbon, 2020. 167: p. 345-350. (https://doi.org/10.1016/j.carbon.2020.06.034)

154. Yu, H., H.Y. Xu, J. Xia, J.C. Fan, F.C. Wang and H.A. Wu*, Nanoconfined Transport Characteristic of Methane in Organic Shale Nanopores: The Applicability of the Continuous Model. Energy & Fuels, 2020. 34(8): p. 9552-9562. (https://doi.org/10.1021/acs.energyfuels.0c01789)

153. Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Shock-induced ejecta transport and breakup in reactive gas. Physical Chemistry Chemical Physics, 2020. 22: p. 14857-14867. (https://doi.org/10.1039/D0CP01831G)

152. Lim, F.S., S.T. Tan, Y.M Zhu, J.W. Chen, B. Wu, H. Yu, J.M. Kim, R.T. Ginting, K.S. Lau, C.H. Chia, H.A. Wu, M. Gu and W.S. Chang*, Tunable Plasmon-Induced Charge Transport and Photon Absorption of Bimetallic Au-Ag Nanoparticles on ZnO Photoanode for Photoelectrochemical Enhancement under Visible Light. The Journal of Physical Chemistry C, 2020. 124(26): p. 14105-14117. (https://doi.org/10.1021/acs.jpcc.0c03967)

151. Yu, H., H.Y. Xu, J.C. Fan, F.C. Wang and H.A. Wu*, Roughness Factor-Dependent Transport Characteristic of Shale Gas through Amorphous Kerogen Nanopores. The Journal of Physical Chemistry C, 2020. 124(23): p. 12752-12765. (Cover paper) (https://doi.org/10.1021/acs.jpcc.0c02456)

150. Xu, H.Y., H. Yu*, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores. Energy & Fuels, 2020. 34(4): p. 4407-4420. (https://doi.org/10.1021/acs.energyfuels.0c00212)

149. Chen, M.W.#, B. Wu#, L.C. Zhou, Y.B. Zhu* and H.A. Wu, Micromechanical Properties of Pyrolytic Carbon with Interlayer Crosslink. Carbon, 2020. 159: p. 549-560. (https://doi.org/10.1016/j.carbon.2019.12.096)

148. Wang, J.N., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Double-Shock-Induced Spall and Recompression Processes in Copper. Journal of Applied Physics, 2020. 127: p. 135903. (https://doi.org/10.1063/1.5144567)

147. Liu, C., J.N. Zhang, H. Yu, J. Chen, D.T. Lu and H.A. Wu*, New Insights of Natural Fractures Growth and Stimulation Optimization Based on a Three-Dimensional Cohesive Zone Model. Journal of Natural Gas Science and Engineering, 2020. 76: p. 103165. (https://doi.org/10.1016/j.jngse.2020.103165)

146. Yu, H., J.C. Fan, J. Xia, H. Liu and H.A. Wu*, Multiscale gas transport behavior in heterogeneous shale matrix consisting of organic and inorganic nanopores. Journal of Natural Gas Science and Engineering, 2020. 75: p. 103139. (https://doi.org/10.1016/j.jngse.2019.103139)

145. Wu, Y.Q., P. Tahmasebi*, H. Yu, C.Y. Lin*, H.A. Wu and C.M. Dong, Pore-Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation. Journal of Geophysical Research: Solid Earth, 2020. 125(1): p. e2019JB018309. (https://doi.org/10.1029/2019JB018309)

144. Fan, J.C., H.A. Wu* and F.C. Wang*, Evaporation-driven liquid flow through nanochannels. Physics of Fluids, 2020. 32(1): p. 012001. (https://doi.org/10.1063/1.5137803)

143. Gao, H.L.#, R. Zhao#, C. Cui, Y.B. Zhu, S.M. Chen, Z. Pan, S.M. Wen, Y.F. Meng, C. Liu, H.A. Wu and S.H. Yu*, Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020. 7(1): p. 73-83. (https://doi.org/10.1093/nsr/nwz077)

142. Ma, Z.Y.#, Z.L. Yu#, Z.L. Xu#, L.F. Bu, H.R. Liu, Y.B. Zhu, B. Qin, T. Ma, H.J. Zhan, H.A. Wu, H. Ding* and S.H. Yu*, Origin of Batch Hydrothermal Fluid Behavior and Its Influence on Nanomaterial Synthesis. Matter, 2020. 2(5): p. 1270-1282. (https://doi.org/10.1016/j.matt.2020.02.015)

141. Guan, Q.F.#, H.B. Yang#, Z.M. Han#, L.C. Zhou, Y.B. Zhu, Z.C. Ling, H.B. Jiang, P.F. Wang, T. Ma, H.A. Wu and S.H. Yu*, Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020. 6(18): p. eaaz1114. (http://dx.doi.org/10.1126/sciadv.aaz1114)

140. Kueh, T.C.#, H. Yu#, A.K. Soh, H.A. Wu* and Y.M. Hung*, Influence of Substrate on Ultrafast Water Transport Property of Multilayer Graphene Coatings. Nanotechnology, 2020. 31(37): p. 375704. (https://doi.org/10.1088/1361-6528/ab9864)

139. Li, X.Y.#, H.C. Zhang#*, H. Yu#, J. Xia, Y.B. Zhu, H.A. Wu*, J. Hou, J. Lu, R.W. Ou, C.D. Easton, C. Selomulya, M.R. Hill, L. Jiang and H.T. Wang*, Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. Advanced Materials, 2020. 32(24): p. 2001777. (https://doi.org/10.1002/adma.202001777)

138. Gan, J.S.#, H. Yu#, M.K. Tan, A.K. Soh, H.A. Wu* and Y.M. Hung*, Performance Enhancement of Graphene-Coated Micro Heat Pipes for Light-Emitting Diode Cooling. International Journal of Heat and Mass Transfer, 2020. 154: p. 119687. (https://doi.org/10.1016/j.ijheatmasstransfer.2020.119687)

137. Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, Microscopic Origin of Capillary Force Balance at Contact Line. Physical Review Letters, 2020. 124(12): p. 125502. (https://doi.org/10.1103/PhysRevLett.124.125502)

136. Wang, K.#, X.H. Sun#, Y. Zhang, Y.C. Wei, D.Y. Chen, H.A. Wu, Z.J. Song, R. Long*, J.B. Wang* and J. Chen*, Microfluidic cytometry for high-throughput characterization of single cell cytoplasmic viscosity using crossing constriction channels. Cytometry Part A, 2019. 97(6): p. 630-637. (http://dx.doi.org/10.1002/cyto.a.23921)

135. Wang, K.#, X.H. Sun#, Y. Zhang, T. Zhan, Y. Zheng, Y.C. Wei, P. Zhao, D.Y. Chen, H.A. Wu, W.H. Wang, R. Long*, J.B. Wang* and J. Chen*, Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. Royal Society Open Science, 2019. 6: p. 181707. (http://dx.doi.org/10.1098/rsos.181707)

134. Xia, J., Y.B. Zhu*, Z.Z. He, F.C. Wang and H.A. Wu*, Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Interfaces, 2019. 11(18): p. 17068-17078. (http://dx.doi.org/10.1021/acsami.9b02971)

133. Liu, C., Y.K. Shen, J.N. Zhang, D.T. Lu, H. Liu and H.A. Wu*, Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas. Science China: Physics, Mechanics & Astronomy, 2019. 62. (https://doi.org/10.1007/s11433-019-9427-x)

132. Wu, B., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Fast reaction of aluminum nanoparticles promoted by oxide shell. Journal of Applied Physics, 2019. 126(14): p. 144305. (https://doi.org/10.1063/1.5115545)

131. Hu, X.Y.#., X.R. Wang#, Z.P. Ge, L. Zhang, Y.R. Zhou, J.Y., Li, L.F. Bu, H.A. Wu, P. Li*, W.P. Xu*, Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst, 2019. 144: p. 3861-3869. (https://doi.org/10.1039/C9AN00251K)

130. Yu, L.X.#, C. Zhu#, X.H. Sun, J. Salter, H.A. Wu, Y. Jin, W. Zhang*, R. Long*, Rapid Fabrication of Malleable Fiber Reinforced Composites with Vitrimer Powder. ACS Applied Polymer Materials, 2019. 1(9): p. 2535-2542. (http://dx.doi.org/10.1021/acsapm.9b00641)

129. He, Z.Z., Y.B. Zhu*, J. Xia and H.A. Wu, Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019. 133: p. 103706. (https://doi.org/10.1016/j.jmps.2019.103706)

128. Zhou, N., F.C. Wu, Y.B. Zhu, X.Z. Li, Q. Wu* and H.A. Wu*, Defect production and segregation induced by collision cascades in U-10Zr alloy. Journal of Nuclear Materials, 2019. 526(2): p. 151769. (https://doi.org/10.1016/j.jnucmat.2019.151769)

127. Chen, S.M.#, H.L. Gao#, X.H. Sun#, Z.Y. Ma, T. Ma, J. Xia, Y.B. Zhu, R. Zhao, H.B. Yao, H.A. Wu* and S.H. Yu*, Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019. 1(2): p. 412-427. (https://doi.org/10.1016/j.matt.2019.03.012)

126. Wang, W.B.#, Y.B. Zhu#, Q.L. Wen, Y.T. Wang, J. Xia, C.C. Li, M.W. Chen, Y.W. Liu*, H.Q. Li, H.A. Wu* and T.Y. Zhai*, Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro‐oxidation. Advanced Materials, 2019. 31(28): p. 1900528. (https://doi.org/10.1002/adma.201900528)

125. Yu, Z.L.#, B. Qin#, Z.Y. Ma, J. Huang, S.C. Li, H.Y. Zhao, H. Li, Y.B. Zhu, H.A. Wu and S.H. Yu*, Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019. 31(23): p. 1900651. (https://doi.org/10.1002/adma.201900651)

124. Wu, F.C., Y.B. Zhu, X.Z. Li, P. Wang, Q. Wu* and H.A. Wu*, Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas. Journal of Applied Physics, 2019. 125: p. 185901. (https://doi.org/10.1063/1.5086542)

123. Yu, Y.Z., J.C. Fan, J. Xia, Y.B. Zhu, H.A. Wu and F.C. Wang*, Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019. 11: p. 8449-8457. (https://doi.org/10.1039/C9NR00317G)

122. Chen, M.W., Y.B. Zhu*, J. Xia and H.A. Wu*, Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface. Carbon, 2019. 148: p. 307-316. (https://doi.org/10.1016/j.carbon.2019.04.003)

121. Yu, H., Y.B. Zhu, X. Jin*, H. Liu and H.A. Wu*, Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence. Journal of Natural Gas Science and Engineering, 2019. 64: p. 28-40. (https://doi.org/10.1016/j.jngse.2019.01.016)

120. Zhou, L.C., X.H. Sun, M.W. Chen, Y.B. Zhu and H.A. Wu*, Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Composite Structures, 2019. 215: p. 278-288. (https://doi.org/10.1016/j.compstruct.2019.02.053)

119. Yu, Y.Z., J.C. Fan, A. Esfandiar, Y.B. Zhu, H.A. Wu and F.C. Wang*, Charge Asymmetry Effect in Ion Transport through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019. 123(2): p. 1462-1469. (https://doi.org/10.1021/acs.jpcc.8b09742)

118. Wang, J.N., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves. Computational Materials Science, 2019. 156: p. 404-410. (https://doi.org/10.1016/j.commatsci.2018.10.018)

117. Sun, X.H., L.X. Yu, M. Rentschler, H.A. Wu* and R. Long*, Delamination of a rigid punch from an elastic substrate under normal and shear forces. Journal of the Mechanics and Physics of Solids, 2019. 122: p. 141-160. (https://doi.org/10.1016/j.jmps.2018.09.009)

C.07 王奉超,朱银波,吴恒安.纳米通道受限液体的结构和输运[J].中国科学:物理学 力学 天文学(约稿),2018,48(9):094609. pdf

116. Chen, S.M.#, H.L. Gao#, Y.B. Zhu#, H.B. Yao, L.B. Mao, Q.Y. Song, J. Xia, Z. Pan, Z. He, H.A. Wu and S.H. Yu*, Biomimetic twisted plywood structural materials. National Science Review, 2018. 5(5): p. 703-714. (https://doi.org/10.1093/nsr/nwy080)

115. Liu, C., X. Jin*, F. Shi, D.T. Lu, H. Liu and H.A. Wu*, Numerical investigation on the critical factors in successfully creating fracture network in heterogeneous shale reservoirs. Journal of Natural Gas Science and Engineering, 2018. 59: p. 427-439. (https://doi.org/10.1016/j.jngse.2018.09.019)

114. Cai, Y., H.A. Wu* and S.N. Luo*, A loading-dependent model of critical resolved shear stress. International Journal of Plasticity, 2018. 109: p. 1-17. (https://doi.org/10.1016/j.ijplas.2018.03.011)

113. Zhou, L.C., M.W. Chen, C. Liu and H.A. Wu*, A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites. Composite Structures, 2018. 204: p. 536-547. (https://doi.org/10.1016/j.compstruct.2018.07.128)

112. Yu, Z.L.#, N. Yang#, L.C. Zhou, Z.Y. Ma, Y.B. Zhu, Y.Y. Lu, B. Qin, W.Y. Xing, T. Ma, S.M. Chen, H.L. Gao, H.A. Wu and S.H. Yu*, Bioinspired polymeric woods. Science Advances, 2018. 4(8): p. eaat7223. (http://dx.doi.org/10.1126/sciadv.aat7223)

111. Tong, W.L., Y.M. Hung*, H. Yu, M.K. Tan, B.T. Ng, B.T. Tan, H.A. Wu and A.K. Soh, Ultrafast water permeation in graphene nanostructures anomalously enhances two-phase heat transfer. Advanced Materials Interfaces, 2018. 5(13): p. 1800286. (https://doi.org/10.1002/admi.201800286)

110. Fan, J.C., F.C. Wang*, J. Chen, Y.B. Zhu, D.T. Lu, H. Liu and H.A. Wu*, Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Royal Society Open Science, 2018. 5(6): p. 180076. (http://dx.doi.org/10.1098/rsos.180076)

109. He, Z.Z., Y.B. Zhu and H.A. Wu*, Self-folding mechanics of graphene tearing and peeling from a substrate. Frontiers of Physics, 2018. 13(3): p. 138111. (https://doi.org/10.1007/s11467-018-0755-5)

108. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based numerical model to calculate conductivity of propped fracture considering proppant transport, embedment and crushing. Journal of Petroleum Science and Engineering, 2018. 167: p. 615-626. (https://doi.org/10.1016/j.petrol.2018.04.042)

107. Wang, G.F., H.L. Qin, X. Gao, Y. Cao, W. Wang, F.C. Wang, H.A. Wu, H.P. Cong* and S.H. Yu*, Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors. Chem, 2018. 4(4): p. 896-910. (https://doi.org/10.1016/j.chempr.2018.01.008)

106. Wu, B., F.C. Wu, Y.B. Zhu, P. Wang, A.M. He* and H.A. Wu*, Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks. AIP Advances, 2018. 8(4): p. 045002. (https://doi.org/10.1063/1.5021671)

105. Zhu, W.D., Y.B. Zhu, L. Wang, Q. Zhu, W.H. Zhao, C.Q. Zhu, J. Bai, J.L. Yang, L.F. Yuan*, H.A. Wu* and X.C. Zeng*, Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018. 122(12): p. 6704-6712. (http://dx.doi.org/10.1021/acs.jpcc.8b00195)

104. Yu, H., J.C. Fan, J. Chen, Y.B. Zhu and H.A. Wu*, Pressure-dependent transport characteristic of methane gas in slit nanopores. International Journal of Heat and Mass Transfer, 2018. 123: p. 657-667. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.003)

103. Ou, X.W.#, Y.Z. Yu#, R.Z. Wu, A. Tyagi, M.H. Zhuang, Y. Ding, I.H. Abidi, H.A. Wu, F.C Wang* and Z.T. Luo*, Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Applied Materials & Interfaces, 2018. 10(6): p. 5534-5542. (http://dx.doi.org/10.1021/acsami.7b17251)

102. Li, X.Z., J.C. Fan, H. Yu, Y.B. Zhu* and H.A. Wu*, Lattice Boltzmann method simulations about shale gas flow in contracting nano-channels. International Journal of Heat and Mass Transfer, 2018. 122: p. 1210-1221. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066)

101. Wang, X.L., F. Shi, C. Liu, D.T. Lu, H. Liu and H.A. Wu*, Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures. Journal of Natural Gas Science and Engineering, 2018. 50: p. 309-324. (https://doi.org/10.1016/j.jngse.2017.12.013)

C.06 王奉超,孙长庆,吴恒安.受限水的超流特性[J].科学通报(约稿),2017,62(11):1111-1114.pdf

C.05 范竞存,余昊,陈杰,李向哲,王奉超,吴恒安.非常规油气开采中的微纳米力学问题研究进展[J].中国科学技术大学学报(约稿),2017,47(02):142-154.pdf

100. Wu, F.C., Y.B. Zhu, Q. Wu, X.Z. Li, P. Wang and H.A. Wu*, Helium bubbles aggravated defects production in self-irradiated copper. Journal of Nuclear Materials, 2017. 496: p. 265-273. (https://doi.org/10.1016/j.jnucmat.2017.09.042)

99. Liu, C., F. Shi, D.T. Lu, H.A. Wu*, H. Wang and H. Liu*, Numerical simulation of simultaneous multiple fractures initiation in unconventional reservoirs through injection control of horizontal well. Journal of Petroleum Science and Engineering, 2017. 159: p. 603-613. (https://doi.org/10.1016/j.petrol.2017.09.064)

98. Hou, Y., Y.B. Zhu, X.Y. Liu, Z.H. Dai, L.Q. Liu, H.A. Wu* and Z. Zhang*, Elastic–plastic properties of graphene engineered by oxygen functional groups. Journal of Physics D: Applied Physics, 2017. 50(38): p. 385305. (http://dx.doi.org/10.1088/1361-6463/aa7fd4)

97. Zhu, Y.B.#, F.C. Wang# and H.A. Wu*, Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017. 147(4): p. 044706. (http://dx.doi.org/10.1063/1.4995432)

96. Xia, J., Y.B. Zhu*, F.C. Wang and H.A. Wu*, Effect of grain boundaries on mechanical transverse wave propagations in graphene. Journal of Applied Physics, 2017. 121(21): p. 215105. (http://dx.doi.org/10.1063/1.4984763)

95. Ge, J.#, L.A. Shi#, Y.C. Wang#, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W. Zhu, H.A. Wu and S.H. Yu*, Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017. 12(5): p. 434-440. (http://dx.doi.org/10.1038/nnano.2017.33)

94. Chen, M.W., H.F. Zhan*, Y.B. Zhu, H.A. Wu* and Y.T. Gu, Mechanical properties of penta-graphene nanotubes. Journal of Physical Chemistry C, 2017. 121(17): p. 9642-9647. (http://dx.doi.org/10.1021/acs.jpcc.7b02753)

93. Yu, H., J. Chen, Y.B. Zhu*, F.C. Wang and H.A. Wu*, Multiscale transport mechanism of shale gas in micro/nano-pores. International Journal of Heat and Mass Transfer, 2017. 111: p. 1172-1180. (https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.050)

92. Chen, J., H. Yu, J.C. Fan, F.C. Wang, D.T. Lu, H. Liu and H.A. Wu*, Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores. AIP Advances, 2017. 7(4): p. 045217. (http://dx.doi.org/10.1063/1.4982729)

91. Cox, L.M.*, X.H. Sun, C. Wang, N. Sowan, J.P. Killgore, R. Long, H.A. Wu, C.N. Bowman and Y.F. Ding*, Light-stimulated permanent shape reconfiguration in crosslinked polymer microparticles. ACS Applied Materials & Interfaces, 2017. 9(16): p. 14422-14428. (http://dx.doi.org/10.1021/acsami.7b02759)

90. Wang, L.Y., H.A. Wu and F.C. Wang*, Water desalination using nano screw pumps with a considerable processing rate. RSC Advances, 2017. 7: p. 20360-20368. (http://dx.doi.org/10.1039/C7RA00890B)

89. Wang, Y.C., Y.B. Zhu*, F.C. Wang, X.Y. Liu and H.A. Wu*, Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017. 118: p. 588-596. (http://dx.doi.org/10.1016/j.carbon.2017.03.092)

88. Zhu, Y.B., F.C. Wang* and H.A. Wu, Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017. 146(13): p. 134703. (http://dx.doi.org/10.1063/1.4979478)

87. Liu, C., F. Shi, Y.P. Zhang, Y.G. Zhang, D.W. Deng, X.L. Wang, H. Liu and H.A. Wu*, High injection rate stimulation for improving the fracture complexity in tight-oil sandstone reservoirs. Journal of Natural Gas Science and Engineering, 2017. 42: p. 133-141. (http://dx.doi.org/10.1016/j.jngse.2017.03.007)

86. Cai, Y., H.A. Wu* and S.N. Luo*, Spall strength of liquid copper and accuracy of the acoustic method. Journal of Applied Physics, 2017. 121(10): p. 105901. (http://dx.doi.org/10.1063/1.4978251)

85. Wang, L.Y., H.A. Wu and F.C. Wang*, Design of nano screw pump for water transport and its mechanisms. Scientific Reports, 2017. 7: p. 41717. (http://dx.doi.org/10.1038/srep41717)

84. He, Z.Z., F.C. Wang, Y.B. Zhu, H.A. Wu* and H.S. Park*, Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017. 101: p. 133-149. (http://dx.doi.org/10.1016/j.jmps.2017.01.019)

83. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Engineering Fracture Mechanics, 2017. 173: p. 64-90. (http://dx.doi.org/10.1016/j.engfracmech.2017.01.025)

82. Hakonen, A.*, F.C. Wang, P.O. Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, V.R. Soma, S.C. Xu, Y.Q Li, A. Boisen and H.A. Wu, Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity. ACS Sensors, 2017. 2(2): p. 198-202. (http://dx.doi.org/10.1021/acssensors.6b00749)

81. Zhong, H.K., J. Xia, F.C. Wang, H.S. Chen, H.A. Wu and S.S. Lin*, Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Advanced Functional Materials, 2017. 27(5): p. 1604226. (http://dx.doi.org/10.1002/adfm.201604226)

80. Chen, J., F.C. Wang*, H. Liu and H.A. Wu, Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Science China: Physics, Mechanics & Astronomy, 2017. 60(1): p. 014611. (http://dx.doi.org/10.1007/s11433-016-0335-5)

79. Wu, F.C., P. Wang, X.Y. Liu and H.A. Wu*, Radiation damage in gallium-stabilized δ-plutonium with helium bubbles. Journal of Nuclear Materials, 2017. 484: p. 7-15. (http://dx.doi.org/10.1016/j.jnucmat.2016.11.018)

C.04 刘晓毅,王奉超,吴恒安.石墨烯及其复合材料纳米力学研究进展[J].固体力学学报(约稿),2016,37(05):398-420.pdf

C.03 吴凤超,刘晓毅,吴恒安.δ相钚镓合金的结构稳定性与力学特性[J].科学通报(约稿),2016,61(20):2207-2215.pdf

C.02 赵天武,申永宽,陈杰,刘闯,刘合,吴恒安.页岩裂缝系统产量预测的敏感性研究[J].应用数学和力学(编委供稿),2016,37(07):718-728.pdf

78. Li, Y.Q., H.A. Wu and F.C. Wang*, Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir, 2016. 32(48): p. 12676-12685. (http://dx.doi.org/10.1021/acs.langmuir.6b03595)

77. Sun, X.H., H.A. Wu* and R. Long*, Thermomechanics of a temperature sensitive covalent adaptable polymer with bond exchange reactions. Soft Matter, 2016. 12(43): p. 8847-8860. (http://dx.doi.org/10.1039/C6SM01857B)

76. Radha, B.*, A. Esfandiar, F.C. Wang*, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu and A.K. Geim*, Molecular transport through capillaries made with atomic-scale precision. Nature, 2016. 538(7624): p. 222-225. (http://dx.doi.org/10.1038/nature19363)

75. Gao, H.L.#, Y.B. Zhu#, L.B. Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu* and S.H. Yu*, Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016. 7: p. 12920. (http://dx.doi.org/10.1038/ncomms12920)

74. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016. 18(32): p. 22039-22046. (http://dx.doi.org/10.1039/C6CP03061K)

73. Zhu, Y.B., F.C. Wang* and H.A. Wu, Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Journal of Chemical Physics, 2016. 145(5): p. 054704. (http://dx.doi.org/10.1063/1.4959902)

72. Liu, X.Y., F.C. Wang*, W.Q. Wang* and H.A. Wu, Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon, 2016. 107: p. 680-688. (http://dx.doi.org/10.1016/j.carbon.2016.06.071)

71. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant. Journal of Natural Gas Science and Engineering, 2016. 33: p. 885-897. (http://dx.doi.org/10.1016/j.jngse.2016.06.031)

70. Xia, J., X.Y. Liu, W. Zhou, F.C. Wang and H.A. Wu*, Transformation between divacancy defects induced by an energy pulse in graphene. Nanotechnology, 2016. 27(27): p. 274004. (http://dx.doi.org/10.1088/0957-4484/27/27/274004)

69. Wang, X.L., F. Shi, H. Liu and H.A. Wu*, Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. Journal of Natural Gas Science and Engineering, 2016. 33: p. 56-69. (http://dx.doi.org/10.1016/j.jngse.2016.05.001)

68. Zhu, Y.B., F.C. Wang*, J. Bai, X.C. Zeng* and H.A. Wu, Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016. 120(15): p. 8109-8115. (http://dx.doi.org/10.1021/acs.jpcc.6b00258)

67. Zhao, Y.L., J. Yao, L. Xu, M.N. Mankin, Y.B. Zhu, H.A. Wu, L.Q. Mai, Q.J. Zhang and C.M. Lieber*, Shape-controlled deterministic assembly of nanowires. Nano Letters, 2016. 16(4): p. 2644-2650. (http://dx.doi.org/10.1021/acs.nanolett.6b00292)

66. Cai, Y., J.Y. Huang, H.A. Wu*, M.H. Zhu, W.A. Goddard and S.N. Luo*, Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. Journal of Physical Chemistry Letters, 2016. 7(5): p. 806-810. (http://dx.doi.org/10.1021/acs.jpclett.5b02798)

65. Wang, X.L., C. Liu, H. Wang, H. Liu and H.A. Wu*, Comparison of consecutive and alternate hydraulic fracturing in horizontal wells using XFEM-based cohesive zone method. Journal of Petroleum Science and Engineering, 2016. 143: p. 14-25. (http://dx.doi.org/10.1016/j.petrol.2016.02.014)

64. Li, Y.Q., H.A. Wu and F.C. Wang*, Stagnation of a droplet on a conical substrate determined by the critical curvature ratio. Journal of Physics D: Applied Physics, 2016. 49(8): p. 085304. (http://dx.doi.org/10.1088/0022-3727/49/8/085304)

63. Liu, C., X.L. Wang, D.W. Deng, Y.P. Zhang, Y.G. Zhang, H.A. Wu* and H. Liu*, Optimal spacing of sequential and simultaneous fracturing in horizontal well. Journal of Natural Gas Science and Engineering, 2016. 29: p. 329-336. (http://dx.doi.org/10.1016/j.jngse.2016.01.024)

62. Zhang, S.J., S.S. Lin*, X.Q. Li, X.Y. Liu, H.A. Wu, W.L. Xu, P. Wang, Z.Q. Wu, H.K. Zhong and Z.J. Xu, Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells. Nanoscale, 2016. 8(1): p. 226-232. (http://dx.doi.org/10.1039/C5NR06345K)

61. Wu, H.A.* and X.Y. Liu, Tuning electromechanics of dynamic ripple pattern in graphene monolayer. Carbon, 2016. 98: p. 510-518. (http://dx.doi.org/10.1016/j.carbon.2015.11.010)

60. Wang, L.Y., H.A. Wu and F.C. Wang*, Efficient transport of droplet sandwiched between saw-tooth plates. Journal of Colloid and Interface Science, 2016. 462: p. 280–287. (http://dx.doi.org/10.1016/j.jcis.2015.09.071)

C.01 王奉超,吴恒安.石墨烯类二维材料的质子输运特性[J].物理(约稿),2015,44(07):453-455.pdf

59. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano, 2015. 9(12): p. 12197–12204. (http://dx.doi.org/10.1021/acsnano.5b06572)

58. Shen, Y.K., H. Liu, H. Wang and H.A. Wu*, Wellbore instability induced by alternating water injection and well washing with an elasto-plastic erosion model. Journal of Natural Gas Science and Engineering, 2015. 27: p. 1863-1870. (http://dx.doi.org/10.1016/j.jngse.2015.11.016)

57. Wang, F.C. and H.A. Wu*, Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 2015. 5: p. 17521. (http://dx.doi.org/10.1038/srep17521)

56. Liu, X.Y., F.C. Wang* and H.A. Wu, Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2015. 17(47): p. 31911-31916. (http://dx.doi.org/10.1039/c5cp04343c)

55. Lin, S.S.*, S.J. Zhang, X.Q. Li, W.L. Xu, X.D. Pi, X.Y. Liu, F.C. Wang, H.A. Wu* and H.S. Chen, Quasi-two-dimensional SiC and SiC2: interaction of silicon and carbon at atomic thin lattice plane. Journal of Physical Chemistry C, 2015. 119(34): p. 19772-19779. (http://dx.doi.org/10.1021/acs.jpcc.5b04113)

54. Cai, Y., L. Wang, H.A. Wu*, M.H. Zhu*, C.L. Liu and S.N. Luo*, Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Physical Review B, 2015. 92(1): p. 014108. (http://dx.doi.org/10.1103/PhysRevB.92.014108)

53. Wang, H., H. Liu*, H.A. Wu and X.X. Wang, A 3D numerical model for studying the effect of interface shear failure on hydraulic fracture height containment. Journal of Petroleum Science and Engineering, 2015. 133: p. 280-284. (http://dx.doi.org/10.1016/j.petrol.2015.06.016)

52. Wu, H.A.*, J. Chen and H. Liu, Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. Journal of Physical Chemistry C, 2015. 119(24): p. 13652-13657. (http://dx.doi.org/10.1021/acs.jpcc.5b02436)

51. Liu, C., H. Liu, Y.P. Zhang, D.W. Deng and H.A. Wu*, Optimal spacing of staged fracturing in horizontal shale-gas well. Journal of Petroleum Science and Engineering, 2015. 132: p. 86-93. (http://dx.doi.org/10.1016/j.petrol.2015.05.011)

50. Algara-Siller, G., O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser*, H.A. Wu*, A.K. Geim and I.V. Grigorieva*, Square ice in graphene nanocapillaries. Nature, 2015. 519(7544): p. 443-445. (http://dx.doi.org/10.1038/nature14295)

49. Wei, Q.L., S.S. Tan, X.Y. Liu, M.Y. Yan, F.C. Wang, Q.D. Li, Q.Y. An, R.M. Sun, K.N. Zhao, H.A. Wu and L.Q. Mai*, Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Advanced Functional Materials, 2015. 25(12): p. 1773-1779. (http://dx.doi.org/10.1002/adfm.201404311)

48. E, J.C., L. Wang, Y. Cai, H.A. Wu* and S.N. Luo*, Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth. Journal of Chemical Physics, 2015. 142(6): p. 064704. (http://dx.doi.org/10.1063/1.4907627)

47. Shen, Y.K., H. Liu, H. Wang, J. Chen and H.A. Wu*, Initiation and propagation of wormhole in unconsolidated rock matrix induced by long-term water injection. Journal of Petroleum Science and Engineering, 2015. 127: p. 93-100. (http://dx.doi.org/10.1016/j.petrol.2015.01.032)

46. Liu, X.Y., F.C. Wang and H.A. Wu*, Anisotropic growth of buckling-driven wrinkles in graphene monolayer. Nanotechnology, 2015. 26(6): p. 065701. (Cover paper) (http://dx.doi.org/10.1088/0957-4484/26/6/065701)

45. Li, Y.Q., F.C. Wang*, H. Liu and H.A. Wu*, Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluidics and Nanofluidics, 2015. 18(1): p. 111-120. (http://dx.doi.org/10.1007/s10404-014-1422-y)

44. Chen, J., F.S. Wang, G.C. Shi, G. Cao, Y. He, W.T. Ge, H. Liu* and H.A. Wu*, Finite element analysis for adhesive failure of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2015. 125: p. 146-153. (http://dx.doi.org/10.1016/j.petrol.2014.11.011)

43. Hu, S., M. Lozada-Hidalgo*, F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nail, E.W. Hill, D.W. Boukhvalov, M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu* and A.K. Geim, Proton transport through one-atom-thick crystals. Nature, 2014. 516(7530): p. 227-230. (http://dx.doi.org/10.1038/nature14015)

42. Wang, L.Y., F.C. Wang*, F.Q. Yang and H.A. Wu*, Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China: Physics, Mechanics and Astronomy, 2014. 57 (11): p. 2152-2160. (http://dx.doi.org/10.1007/s11433-014-5586-y)

41. Zhao, Y.L.#, J.G. Feng#, X. Liu#, F.C. Wang, L.F. Wang, C.W. Shi, L. Huang, X. Feng, X.Y. Chen, L. Xu, M.Y. Yan, Q.J. Zhang, X.D. Bai, H.A. Wu* and L.Q. Mai*, Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014. 5: p. 4565. (http://dx.doi.org/10.1038/ncomms5565)

40. Liu, X.Y., F.C. Wang,  H.A. Wu* and W.Q. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Applied Physics Letters, 2014. 104(23): p. 231901. (http://dx.doi.org/10.1063/1.4882085)

39. Cai, Y., H.A. Wu* and S.N. Luo*, Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids. Journal of Chemical Physics, 2014. 140(21): p. 214317. (http://dx.doi.org/10.1063/1.4880960)

38. Liu, H.*, H. Wang, H.A. Wu and X.X. Wang, A proppant settling model and its application to the hydraulic fracturing process. Oil Gas-European Magazine, 2014. 40(2): p. 109-112.

37. Li, B., F.P. Zhao, H.A. Wu* and S.N. Luo*, Microstructure effects on shock-induced surface jetting. Journal of Applied Physics, 2014. 115(7): p. 073504. (http://dx.doi.org/10.1063/1.4865798)

36. Joshi, R.K., P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim* and R.R. Nair*, Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014. 343(6172): p. 752-754. (http://dx.doi.org/10.1126/science.1245711)

35. Yan, M.Y.#, F.C. Wang#, C.H. Han*, X.Y. Ma, X. Xu, Q.Y. An, L. Xu, C.J. Niu, Y.L. Zhao, X.C. Tian, P. Hu, H.A. Wu* and L.Q. Mai*, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. Journal of the American Chemical Society, 2013. 135(48): p. 18176-18182. (http://dx.doi.org/10.1021/ja409027s)

34. Cai, Y., F.P. Zhao, Q. An, H.A. Wu*, W. Goddard III and S.N. Luo*, Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: implications to hotspot formation in energetic materials. Journal of Chemical Physics, 2013. 139(16): p. 164704. (http://dx.doi.org/10.1063/1.4825400)

33. Wang, F.C.* and H.A. Wu, Molecular dynamics studies on spreading of nanofluids promoted by nanoparticle adsorption on solid surface. Theoretical & Applied Mechanics Letters, 2013. 3: p. 054006. (http://dx.doi.org/10.1063/2.1305406)

32. Liu, X.Y., F.C. Wang* and H.A. Wu*, Anisotropic propagation and upper frequency limitation of terahertz waves in graphene. Applied Physics Letters, 2013. 103(7): p. 071904. (http://dx.doi.org/10.1063/1.4818683)

31. Chen, J., H. Liu, F.S. Wang, G.C. Shi, G. Cao and H.A. Wu*, Numerical prediction on volumetric efficiency of progressive cavity pump with fluid-solid interaction model. Journal of Petroleum Science and Engineering, 2013. 109: p. 12-17. (http://dx.doi.org/10.1016/j.petrol.2013.08.019)

30. Zhao, F.P., H.A. Wu and S.N. Luo*, Microstructure effects on shock response of Cu nanofoams. Journal of Applied Physics, 2013. 114(7): p. 073501. (http://dx.doi.org/10.1063/1.4818487)

29.  Liu, X.Y., F.C. Wang, H. S. Park and H.A. Wu*, Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model. Journal of Applied Physics, 2013. 114(5): p. 054313. (http://dx.doi.org/10.1063/1.4817790)

28. Wang, F.C. and H.A. Wu*, Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter, 2013. 9(33): p. 7974-7980. (http://dx.doi.org/10.1039/C3SM51425K)

27. Zhou, X.Z., G.C. Shi, G. Cao, C.L. Sun, Y. He, H. Liu and H.A. Wu*, Three dimensional dynamics simulation of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2013. 106: p. 71-76. (http://dx.doi.org/10.1016/j.petrol.2013.04.014)

26. Wang, F.C. and H.A. Wu*, Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 2013. 9(24): p. 5703-5709. (http://dx.doi.org/10.1039/C3SM50530H)

25. Zhao, F.P., Q. An, B. Li, H.A. Wu, W.A. Goddard III, and S.N. Luo*, Shock response of a model structured nanofoam of Cu. Journal of Applied Physics, 2013. 113(6): p. 063516. (http://dx.doi.org/10.1063/1.4791758)

24. Wang, H., H. Liu*, X. Zhou, H.A. Wu, and X. Wang, A 3D finite element model for simulating hydraulic fracturing processes with viscoelastic reservoir properties. Oil Gas-European Magazine, 2012. 38(4): p. 210-213.

23. Wang, H.*, H. Liu, H.A. Wu, G.M. Zhang, and X.X. Wang, A 3D nonlinear fluid-solid coupling model of hydraulic fracturing for multi layered reservoirs. Petroleum Science and Technology, 2012. 30(21): p. 2273-2283. (http://dx.doi.org/10.1080/10916466.2010.516299)

22. Shen, Y.K. and H.A. Wu*, Interlayer shear effect on multilayer graphene subjected to bending. Applied Physics Letters, 2012. 100(10): p. 101909. (http://dx.doi.org/10.1063/1.3693390)

21. Nair, R.R., H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim*, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012. 335(6067): p. 442-444. (http://dx.doi.org/10.1126/science.1211694)

Note: All journal papers published after 2012 are listed above, while only twenty selected journal papers published before 2011 are listed below.

20. Zhou, X.Z., H. Shen, and H.A. Wu*, Bio-optimum prestress in actin filaments with a polygonal cytoskeleton model. Archive of Applied Mechanics, 2011. 81(11): p. 1651-1658. (http://dx.doi.org/10.1007/s00419-011-0508-1)

19. Zhou, X.Z., F.P. Zhao, Z.H. Sun, and H.A. Wu*, The inverse problem of red blood cells deformed by optical tweezers. International Journal of Computational Methods, 2011. 8(3): p. 483-492. (http://dx.doi.org/10.1142/s0219876211002654)

18. Jiang, L.G., H.A. Wu*, X.Z. Zhou, and X.X. Wang, Coarse-grained molecular dynamics simulation of a red blood cell. Chinese Physics Letters, 2010. 27(2): p. 028704. (http://dx.doi.org/10.1088/0256-307X/27/2/028704)

17. Zhang, G.M.*, H. Liu, J. Zhang, H.A. Wu, and X.X. Wang, Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture. Journal of Petroleum Science and Engineering, 2010. 72(3-4): p. 310-317. (http://dx.doi.org/10.1016/j.petrol.2010.03.032)

16. Qi, Z.N., F.P. Zhao, X.Z. Zhou, Z.H. Sun, H.S. Park, and H.A. Wu*, A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology, 2010. 21(26): p. 265702. (http://dx.doi.org/10.1088/0957-4484/21/26/265702)

15. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Atomistic simulations of shock waves in cubic silicon carbide. Computational Materials Science, 2009. 45(2): p. 419-422. (http://dx.doi.org/10.1016/j.commatsci.2008.10.020)

14. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations. Applied Physics Letters, 2009. 95(2): p. 021911. (http://dx.doi.org/10.1063/1.3183584)

13. Sun, Z.H., X.X. Wang*, and H.A. Wu, Surface relaxation effect on the distributions of energy and bulk stresses in the vicinity of Cu surface: An embedded-atom method study. Journal of Applied Physics, 2008. 104(3): p. 033501. (http://dx.doi.org/10.1063/1.2958330)

12. Wu, H.A.* and X.X. Wang, An atomistic-continuum inhomogeneous material model for the elastic bending of metal nanocantilevers. Advances in Engineering Software, 2008. 39(9): p. 764-769. (http://dx.doi.org/10.1016/j.advengsoft.2007.10.005)

11. Sun, Z.H., X.X. Wang*, A.K. Soh, H.A. Wu, and Y. Wang, Bending of nanoscale structures: Inconsistency between atomistic simulation and strain gradient elasticity solution. Computational Materials Science, 2007. 40(1): p. 108-113. (http://dx.doi.org/10.1016/j.commatsci.2006.11.015)

10. Wu, H.A.*, R. Long, X.X. Wang, and F.C. Wang, Elastic interaction between a string of cells and an individual cell. Chinese Physics Letters, 2007. 24(5): p. 1407-1409. (http://dx.doi.org/10.1088/0256-307X/24/5/078)

9. Wu, H.A.*, Z.H. Sun, Q. Cheng, and X.X. Wang, Molecular mechanics modelling and simulation of the adsorption-induced surface stress in micro-nano-cantilever sensors. Journal of Physics Conference Series, 2007. 61: p. 1266-1270. (http://dx.doi.org/10.1088/1742-6596/61/1/250)

8. Wu, H.A.*, G.R. Liu, X. Han, and X.X. Wang, An atomistic simulation method combining molecular dynamics with finite element technique. Chaos Solitons & Fractals, 2006. 30(4): p. 791-796. (http://dx.doi.org/10.1016/j.chaos.2005.08.161)

7. Sun, Z.H., X.X. Wang*, A.K. Soh, and H.A. Wu, On stress calculations in atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2006. 14(3): p. 423-431. (http://dx.doi.org/10.1088/0965-0393/14/3/006)

6. Wu, H.A.*, Molecular dynamics study of the mechanics of metal nanowires at finite temperature. European Journal of Mechanics A-Solids, 2006. 25(2): p. 370-377. (http://dx.doi.org/10.1016/j.euromechsol.2005.11.008)

5. Wu, H.A.*, Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 2006. 33(1): p. 9-16. (http://dx.doi.org/10.1016/j.mechrescom.2005.05.012)

4. Wang, Y., X.X. Wang*, X.G. Ni, and H.A. Wu, Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Computational Materials Science, 2005. 32(2): p. 141-146. (http://dx.doi.org/10.1016/j.commatsci.2004.08.005)

3. Wu, H.A.*, Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Computational Materials Science, 2004. 31(3-4): p. 287-291. (http://dx.doi.org/10.1016/j.commatsci.2004.03.017)

2. Wu, H.A.*, G.R. Liu, and J.S. Wang, Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Modelling and Simulation in Materials Science and Engineering, 2004. 12(2): p. 225-233. (http://dx.doi.org/10.1088/0965-0393/12/2/004)

1. Wang, Y.*, X.G. Ni, X.X. Wang, and H.A. Wu, Effect of temperature on deformation of carbon nanotube under compression. Chinese Physics, 2003. 12(9): p. 1007-1010. (http://dx.doi.org/10.1088/1009-1963/12/9/315)